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these atoms, in contrast to other examples of ^-bridging CO 
ligands.1'3'14 Each ligand serves as a four-electron donor. Two 
electrons are donated by the carbon atom to the pair of metal 
atoms that it bridges, and two electrons from the oxygen are 
donated to the metal Ru(8). Since the oxygen atoms of both 
bridging carbonyl ligands are bonded to the same metal atom, 
the carbon atoms are brought into an unusually close nonbonding 
contact: C(53>»C(63) = 2.46 (2) A. Similar close contacts have 
been shown to facilitate the formation of carbon-carbon bonds 
between CO ligands under reducing conditions.15 Efforts to 
achieve this are in progress. 
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Although strained cycloalkynes have received considerable 
experimental2 and theoretical3 attention for many years, the 
smallest isolable rings are seven-membered.4 We report here the 
synthesis, chemical and structural characterization, and ab initio 
calculations of the first isolable5 six-membered ring containing 
a carbon-carbon triple bond. 

In a continuation of our program of synthesis and study of 
silylene-acetylene polymers6 we were surprised to find that pen-
tasilacycloheptyne (2)7 could be directly synthesized in 80% yield 
simply by the condensation of dilithioacetylene6 and 1,5-di-
chlorodecamethylpentasilane (1). Considerably more surprising 
was the discovery that the analogous coupling of LiC=CLi and 
1,4-dichlorooctamethyltetrasilane (3) afforded octamethyl-
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Table I. NMR Comparison of Cycloalkynes 2, 4, and 5 

cycloalkyne 

Me3SiC=CSiMe3 

C-(Me2Si)6C=C, 5 
2 
4 

13C NMR 
[C=C/SiCH3] («) 

113.02/0.10 
117.77/-3.10,-5.14,-6.24 
123.22/-3.16,-5.91,-6.04 
135.66/-3.02,-6.51 

29Si 

-35.4, 
-33.3, 
-17.8, 

NMR (S) 

-38.9, -39.9 
-34.7, -38.7 
-30.6 

1.200A 

Figure 1. ORTEP diagram of octaisopropyltetrasilacyclohexyne (8). The 
methyl groups have been omitted for clarity. 

tetrasilacyclohexyne (4) in 65% yield as a colorless liquid, easily 

purified by chromatography on silica gel.8 
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Pure, neat 4 slowly decomposes or polymerizes at room tem­
perature but is completely stable when stored as a 20% solution 
in hexane at 0 0C. The structure of cyclohexyne 4 was initially 
deduced from its mass (calcd for C10H24Si4 m/z 256.09522, found 
m/z 256.09561), 1H NMR (two singlets; S 0.224, 0.175), 13C 
NMR, and 29Si NMR spectra. The 13C NMR and 29Si NMR 
spectral data for permethylhexasilacyclooctyne (5),7 2, and 4 are 
tabulated for comparison in Table I. As anticipated, the most 
dramatic effect is observed in 13C NMR absorption of the ace-
tylenic carbons, which steadily shifts downfield to the remarkable 
value of b 135.7 for 4. This corresponds to a downfield shift of 
ca. 23 ppm from the acetylenic resonance of Me3SiC=SiMe3. 

Repeated attempts to obtain crystalline 4 were unsuccessful 
even at low temperatures. Thus, to obtain X-ray structural data 
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it was necessary to synthesize the more bulky derivative 8. 
Synthesis of 8U (colorless crystals, mp 67-68 0C) was accom­
plished by PCl5-induced ring opening of cyclotetrasilane 612 

followed by condensation of the resulting 1,4-dichlorotetrasilane 
7 with LiOsCLi in 25% yield from 6. 
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ySL 

J-Pr2SiCl2 

Li 
i-Pr2Si 

ref. 12 
XSK 
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I 

Cl 
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The crystal structure was solved by direct methods,13 and the 
molecular structure of 8 is shown in Figure 1. Crystal packing 
of 8 produces a molecular asymmetry which affords Si—C=C 
bond angles of 146.8° and 150.5°. The smaller bond angle of 
146.8° may be compared with the C—C=C angle of cyclo-
octyne,14158.5°, and the smallest angle, 145.8 ± 0.7°, measured 
in 3,3,6,6-tetramethyl-l-thia-4-cycloheptyne.4 

The strain of the tetrasilacyclohexyne ring is clearly evidenced 
by enhanced chemical reactivity. For example, in a competition 
for a Diels-Alder Reaction with 2,3-dimethylbutadiene at room 
temperature, after 1 h, >50% of 4 had reacted to produce adduct 
9, while no detectable reaction of dimethyl acetylenedicarboxylate 
was observed. 

X 
25'C 

>50%, 1 h 

MeO2CC=CCO2Me 

1.206A 
1.211A 

10 11 

second-order perturbation theory (MP2)17 and the same basis set. 
The bond separation reactions are 
Si4C2H8 + 2CH4 + 4SiH4 — 

HCCH + 3SiH3SiH3 + 2CH3SiH3 (1) 

Si3C2H6 + 2CH4 + 3SiH4 — 
HCCH + 2SiH3SiH3 + 2CH3SiH3 (2) 

The MP2/6-31G(d) enthalpies for the isodesmic reactions 1 
and 2 are respectively +18.0 and -3.1 kcal/mol. Thus any strain 
introduced into the acetylenic moiety by placing it into the cyclic 
environment of 10 is more than offset by some delocalization into 
the silicon backbone. The greater strain in the five-membered 
ring of 11 decreases this stability by more than 20 kcal/mol. 
Although ring contraction of silacycloalkynes by thermal extrusion 
of silylenes is well-known through the work of Sakurai,18 our 
preliminary studies of the gas-phase pyrolysis of 4 have revealed 
no evidence of ring contraction to hexamethyltrisilacyclopentyne, 
although Me2Si: is produced and trapped. 
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The structures of tetrasilacyclohexyne (10) and trisilacyclo-
pentyne (11) were optimized with the 6-31G(d)15 basis set at the 
SCF level and verified as minima by diagonalizing the matrices 
of energy second derivatives (Hessians). The calculated and 
experimental structures for 10 agree quite well. The calculated 
SiCC angle of 147.0° compares well with an average experimental 
angle of 148.6°, although the angles in the crystal are clearly 
distorted by crystal packing. Ring contraction to trisilacyclo-
pentyne (11) produces a dramatic reduction in the SiCC angle 
to 129.4°, making 11a potentially isolable analog of benzyne. 

To evaluate the stabilities of 10 and 11 the energies of the 
corresponding bond separation reactions16 were determined with 

(11)8 : mass spectrum calcd for C26H56Si4 m/z 480.3459, found 480.3451; 
13C N M R (75.429 MHz, DCCl3) i 136.74 ( C = C ) ; W h e x a n e ) 222 nm (log 
i 3.51), 242 (3.41), Xsh 259 (3.05). Repeated attempts failed to afford an 
acceptable elemental analysis. Calcd for C26H56Si4: C, 65.01; H, 11.75. 
Found: C, 64.69; H, 11.49. 

(12) Watanabe, H.; Muraoka, T.; Kageyama, M.-A.; Nagai, Y. J. Orga-
nomet. Chem. 1981, 216, C45. 

(13) Data were collected at -50 ± 1° C. The structure refinement cal­
culations were performed on a DEC Micro Vax II computer using CAD4-SDP 
programs in the Enraf-Nonius structure determination package. Neutral-atom 
scattering factors and anomalous scattering corrections were taken from the 
following: International Tables for X-ray Crystallography; The Kynoch Press: 
Birmingham, England, 1974; Vol. IV. 

(14) Haase, J.; Krebs, A. Z. Naturforsch. 1971, 26a, 1190. 
(15) Hariharan, P. C ; Pople, J. A. Chem. Phys. Lett. 1972, 16, 217. 

Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. 
(16) Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. 

Soc. 1970, 92, 4796. 

Neighboring Tin Effect in Electron Transfer from 
Thioethers 

Richard S. Glass,* Amanda M. Radspinner, and 
Waheguru Pal Singh 

Department of Chemistry 
The University of Arizona 

Tucson, Arizona 85721 
Received February 18, 1992 

The neighboring silyl substituents in a-silyl ethers are known 
to significantly decrease the electrochemical oxidation potential 
of ethers,1"3 but not thioethers.3"5 Neighboring stannyl sub­
stituents with appropriate geometry in a-stannyl thioethers are 
now shown in this paper to dramatically render the anodic peak 
potential of the representative thioether 1,3-dithiane less positive. 
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